Lack of Association between Nuclear Factor Erythroid-Derived 2-Like 2 Promoter Gene Polymorphisms and Oxidative Stress Biomarkers in Amyotrophic Lateral Sclerosis Patients

نویسندگان

  • Annalisa LoGerfo
  • Lucia Chico
  • Loredana Borgia
  • Lucia Petrozzi
  • Anna Rocchi
  • Antonia D'Amelio
  • Cecilia Carlesi
  • Elena Caldarazzo Ienco
  • Michelangelo Mancuso
  • Gabriele Siciliano
چکیده

Oxidative stress involvement has been strongly hypothesized among the possible pathogenic mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The intracellular redox balance is finely modulated by numerous complex mechanisms critical for cellular functions, among which the nuclear factor erythroid-derived 2-like 2 (NFE2L2/Nrf2) pathways. We genotyped, in a cohort of ALS patients (n = 145) and healthy controls (n = 168), three SNPs in Nrf2 gene promoter: -653 A/G, -651 G/A, and -617 C/A and evaluated, in a subset (n = 73) of patients, advanced oxidation protein products (AOPP), iron-reducing ability of plasma (FRAP), and plasma thiols (-SH) as oxidative damage peripheral biomarkers. Nrf2 polymorphisms were not different among patients and controls. Increased levels of AOPP (P < 0.05) and decreased levels of FRAP (P < 0.001) have been observed in ALS patients compared with controls, but no difference in -SH values was found. Furthermore, no association was found between biochemical markers of redox balance and Nrf2 polymorphisms. These data confirm an altered redox balance in ALS and indicate that, while being abnormally modified compared to controls, the oxidative stress biomarkers assessed in this study are independent from the -653 A/G, -651 G/A, and -617 C/A Nrf2 SNPs in ALS patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis.

Oxidative stress and inflammation are important pathogenetic mechanisms in amyotrophic lateral sclerosis (ALS). Nuclear erythroid 2-related factor 2 (Nrf2) is a basic region leucine-zipper transcription factor that binds to the antioxidant response element, thereby regulating the expression of many genes that are involved in cellular antioxidant and anti-inflammatory defense. Under normal condi...

متن کامل

Lack of Association between Interleukin-10 Gene Promoter Polymorphisms with HIV Susceptibility and Progression to AIDS

Background & Objective: Interleukin (IL)-10 is an important anti-inflammatory and immunomodulatory cytokine. Some authors believe that single nucleotide polymorphisms (SNP) in the promoter region of the IL-10 gene have been associated with susceptibility to HIV infection and progression to AIDS, but its role is not clearly defined yet. The present study was undertaken to evaluate the a...

متن کامل

Activation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by selective degeneration of motor neurons and glial activation. Cell-specific transcriptional regulation induced by oxidative stress may contribute to the survival and activation of astrocytes in the face of motor neuron death. In the present study, we demonstrate an age-dependent increase in Bcl-xL a...

متن کامل

Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration?

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates hundreds of antioxidant genes, and is activated in response to oxidative stress. Given that many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis are characterised by oxidative stress, Nrf2 is commonl...

متن کامل

Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson's as well as Huntington's disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014